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ABSTRACT

The probability integral of the multivariate normal distribution has received
considerable attention since Sheppard (1900) and Pearson (1901) published
their seminal work on the bivariate normal distribution. In the general case,
we are concerned with evaluating

Fn(hi. h2 {P,A) =
h1 hn

f (xi. x2 . xn; {pij})dx1 . . dxn

where {p13} represents the n x n correlation matrix of the xi's, and f (xl. x2, . . xn; {Pu})
is the standardized multivariate normal density function. Direct evaluation of
Fr, is only possible for special cases of {A}. For exr.mple, Dunnett and Sobel
(1955) have shown that when pij = aiaj(i j). where I ai I< 1. then

F4(h h2 hn* {P,A) = [1214) (hi criy)1 f(y)d(y)
,=1 Or-7 Tr2

where (1) represents the univariate normal distribution function. This special
case is the basis for much of modern psychometric theory. More recently,
however. 13Ohrer and Schervish (1981). have developed in error-bounded algo-
rithm for evaluating F for general {pu }. Computationally, this algorithm is
restricted to n = 7. and even at n = 7. it can require as much as 24 hours to
compute a single probability with 10-3 accuracy on a computer than is capable
of approximately 1-2 million scalar floating point operations per second.

The purpose of this report is to present a fast and general approximation
for rectangular regions of the multivariate normal distribution function based
on Clark-s (1961) approximation to the moments of the maximum of n jointly
normal random variable3. The performance of this approximatioii compared to
special cases in which the exact results are known and error-bounded reduction
formulae show the accuracy of the approximation to be adequate for many
practical ap plications where multivariate normal probabilities are required.

1
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1 Introduction
The probability integral of the multivariate normal distribution has re, !ived
considerable attention since Sheppard (1900) and Pearson (1901) published
their seminal work on the bivariate normal distribution. In the general case,
we are concerned with evaluating

F01.h2 II,: {AM =
1st

1 --74: -10 .70
f (x1, x2, . . . . xn: fpupdx1 ... dx

( 1 )

where {p1,} represents the n x n symmetric correlation matrix of the .ra's, and
f (.2.1..r2 .rn; {p,,}) is the standardized multivariate normal density func-
tion. Direct evaluation of F is only possible for special cases of {pii}. For
.?xample. Dunnett and Sobel (1955) have shown that when pu = ct,ai(i 0 j).
where I a, :< 1. then

Fn(h1. h2 hn: {Pun f' i no (' c")] f(y)d(y)
-x 1.,..1 ir="7-t2

(2)

where 4) represents the univariate normal distribution function. The probabil-
ity 'in equation (2) can be approximated ta any practical degree of accuracy
using Gauss-Hermite quadrature (Stroud and Sechrest, 1966). It should be
noted that when pu = p fot .1'. i. j. then

Fr( h . h h' {P}) = j-c, T 1 ----i )1 f(Y)d(Y)
po [,,, 1 h +

/
pil2y

r \ v L - p

and if p = .5 and 5 = 0.

F4(0.0 ..... 0: {.5}) =
1

n + 1

(3)

(4)

More recently. however, Bohrer and Schervish (1981). have developed an
error-bounded algorithm for evaluating fin for general {flu}. Computationally,
thw algorithm is restricted to n = 7. and even at n = 7. it can require as much
as 24 hours to compute a single probability with 10-2 accuracy on a computer
than is capable of approximately 1-2 million scalar floating point operatious
per second. It is unclear whether vectorization of this algorithm is possible, so
that the greatly increased speeds of parallel computing environments could be
exploited (e.g.. 20-80 million floating point instructions per second). Even still.
it is unlikely that this algorithm would be computational tractable for n > 10.

2



An alternate approach to approximating Fn, can be obtained by noting
that

F, = Pr(x1 < h1, x2 < h2, . xn < hn) (5)

If h1 = h = 0. and the x, follow a standardized multivariate normal
distribution. F? is a so-called -orthant" probability. Note, however. that this
orthant probability is equivalent to

= Pr frnax(x1 x) 01 (6)

If max(x, x) were normally distributed, which it clearly is not, with mean
E[max(x, x)] and variance V[rnax(x, x,)], then,

h E(Inax(x1 rn)1
(7)=

'071a,r(ri rr.)

where in this case h = 0. For the more general rectangular region case of hi,
we could set h = 0 and subtract h, from the mean values of each of the xi,
which to this point have been expressed in standardized form.

To use this algorithm, we must first have an accurate method of computing
the first two moments of rizax(x, r) where the x, have a joint multivariate
normal distribution with general correlation flou , and some bound on-the error
introduced by assuming that max(.r,.....rn) has a normal distribution. Such
an approximation has been described by Clark (1961), and in the following,
we describe its use in connection with evaluating F(x1,./.2 x,: {ou)). We
begin by reviewing Clark's original formulae.

2 The Clark Algorithm
Let any three successive components from an n-variate vector. y 1. be dis-
tributed:

Y, ill

lii+1 I -s- .k. ( [ ii.+1 Gra c,r+1 P.,+1

\ 1tz+2 1 at al+2 Pl.t-I-2 at-I-1 at+2 P:+1.t+2

Let th = max(y1) = y,. and compute the probability that
follows:

set :1+1 = ( it.

where 1 = crt2 + or ,24.1 2crs (7,44 P...1

Then P(M+1 % g) = > 0)
=

3

7

Yi+1 > th as



-i1+1

the value of the univariate normal distribution function at the standard deviate

741
Now let gi+i = max(yi, yi+i) and assume (as an approximation) that (yi+2,ui+i)

is bivariate normal with means,

11(y 1+2) = e(y4+2) = P1+2
I1(ut+1) = e(ut+i) = titt(z.+1)+ Pi+14(zi+i)+C.4.10.z.+1), (8)

variances

cr2(y.+2) = 1(42) 12(Y,+2) = cri+2
= E( 41) e2(u1+1) = c7,24.2.

where

and correlation

Then.

(9)

= (ii;1 + cr)(1)(zi4-1)+ (ii!+1 + 0"41)4)(--:.+t)+ (p, + pi+i)Ci4.10(zi+i),
(10)

Cr ePia+2 (I) ( + 1 ) Cr 1+1Pi+1.i+20( 2t+1)
Aut+I.Y14.2) = (11)

cr(th+i)

P (y1+2 = max( y, y1+1. !h4-2) ) = P ((y.+2 y.4-1 > 0) n (y1+2 yj > 0))
(12)

is approximated by

P(y,+2 > h+t) = P(y1+2 th+1 > 0)

/11+2

+ (7 2 ( e + t ) 2 al 4- 2 a (u i + I ) p (u t + 1 , Y t + 2 ) )
(13)

Assuming as a working approximation that ut.f.i is normally distributed
with the above.mean And variance, we may therefore proceed. recursively from
i = 1 to i = n 1. where yn+1 is an independent duMmy variate with mean
zero hnd variance zero (i.e. yn.1.1 = 0). Then. for example.

4

8

5;.



P[vn+1 = max(yi, yn+i )]

= P Ryn+t Yt > 0) n (yn+1 Y2 > 0) n n (yn+1 yn > 0)1

= P[(yj > 0) n ( y2 > o)n n (y, > 0)1 (14)

approximates the probability of the negative orthant of the specified multi-

variate normal distribution. In the case of ri correlated standard normals, the

negative and positive orthant probabilities are identical. The probability of any

other orthant can be obtained by reversing the signs of the variates correspond-

ing to I's in the orthant pattern. Of course, 'ui4.1 is not normally distributed.

Errors produced by substituting normal approximations for the motaents of

are discussed in the.following section.
More generally, to compute a multivariate normal probability over an n

dimensional rectangular region. for example.

we compute the negative orthant setting itn.4.1 = h. Finally, to approximate the

integral for general h,. %.v. compute the negative orthant by setting ii4.1 = 0

and ji, = t, h,.

3 Accuracy of the Clark Approximation

The errors of the Clark approximation result from the replacement ( f non-

normal distributions by normal approximations. For example, suppose that

we are interested in the maximum of four standard normal variables, i.e.,

max(yl. y2, y3, y4). By assuming that u2 is normally distributed with expected

wine E[max(yi, y2)] and variance V[max(yi.y2)1, we can then use the mo-

ments of max(uj. y3) as an approximation for those of mar(yt,y2, y3). Next,

we assume that #3 is normally distributed with expectation and variance equal

to the corresponding moments of max(u2.y3), and can therefote use the mo-

ments of max(u3, y4) as an approximation for those of max(y1 , y4). In this

example, of course, u2 and u3 are not normally distributed. Furthermore, this

is a rare case in which the distribution of a statistical variate diverges from

normality as sample size increases. Tippet (1925) first showed that skewness

and kurtosis of the maximum of n standard normals goes form .019 and .62

respectively for n 2 to .429 and .765 for n = 100 to .61,8 and 1.088 for n =

1000. In terms of expected values of n standard normal variables, the effect of

this non-normality is quite small. For example. for n = 1.0, the true value is

9



1.5388 and the approximatioa yields 1.5367. Even for n = 1000 the expected
value is 3.2414 and the Tproximated value is 3.2457.

The effect of non-normality on the accuracy of the approximation is also
dependent on the difference between E(i_1,yi). For example,.suppose we
wish to approximate the moments of max(y142) where ys and y2 are not
normally distributed. Clark (1961) points out that if the difference E(y1)
E(y2) is large telative to the greater of Vi/2(y1) and V1/2(y2) the random
variable max(y1. y2) is almost identical to yi. Certainly the first two moments
of max(y1, y2) would be minimally affected by replacing yi and y2 by normal
approximations. However if E(y1) E(y2) is'small relative to the respective
standard deviations, then the use of normal approximations could conceivably
result in significant errors in the approximation of the mean and va-iance of
their maximum.

In light of this. the following illustrations of the accuracy of the Clark
approximation are. in fact. the worst case results, since they rept nent the case
in which the expected values of the yi are equal. These results indicate that the
error bound for the Clark approximation is approximately 10-3, as illustrated
in the following section.

4 Illustration
To evaluate the performance of this algorithm. we 'Aave examined a series of
equa-correlated multivariate normal distributions for which exact results are
known (see Gupta. 1963) and those considered by Schervish (1984). Table lÀ
displays results for to 7 equa-correlated standard normal random variables
with selected values of p = .2. .3. .8 and .9. and upper integration bounds
of 0. 1. and 2. Inspection of the tabled probabilities reveals that the Clark
algotithm is generally accurate to at least 10 and that computational times
are a linear function of dimensiomdity. The speed of the Clark algorithm does
not depend on p. In contrast, the speed of MCI,NOR (Schevish, 1984) is expo-
nentially increasing with both dimensionality and p. It the 7-variate normal
case with pi, = .9. MULNOR req&red almost a day to compute a probability
which was a:curate to 2 x 10-5, Miereas the Clark algorithm computed the
same probability with 4 x 10-4 accuracy in less than three thousandths of a
second. Inspection of these results and others not reported here, suggest that
the acciracy of the Clark approximation increases with increasing p.

Table 1B displays results for orthant probabilities of higher dimensional
integrals (n =,,10. 20. and 4Q), for the special case of p = .5. where n =
1/(n + 1). Apia, resultS are accurate to at least 10-3. and computational
times are linel in n. MULNOR could not be used to evaluate integrals of this
dimensionality.

6
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Finally, Table 1C displays results for some tail probabilities of the multi-
variate normal distribution. In this case, the upper bound of the integration
was -2.5, n = (3,5,10), and p = (.5,.9). These probabilities ranged from 10-3
tO 10" and accuracy of the Clark approximation was 10-5 in all cases.

5 Discussion
Clark's (1961) formulae for the moments of the maximum of n correlated ran-
dom normal variates can clearly be used to obtain a fast and accurate ap-
proximation to multivariate norm). probabilities. Ex ,mivation of a series of
examples involving special cases in which the true results are known, reveals
that the error bound fog the approximation is approximately 10-3 regardless
of dimensionality, and thet accuracy increases with increases in I p I. These
reFults are conservative in that we would expect the ill effect of using normal
approximations to be v test when p, = p,(i = 1,n) which is the case used
in the illustrations.

In terms of computational speed. the Clark approximation is clearly un-
paralleled. A reasonable estimate of the speed of the Clark algorithm is given
by.

speed
.0004(n)

= regaflop) seconds

where megaflop is the number of scalar floating point instructions per second
that the coaiputer is capable of performing.

Numetous applications of the Clark algorithm suggest themselves. Some
preliminary work in this area has already been conducted by Daganzo (1984),
in the context of discrete choice models of consumer behavior, and by Gibbons.
Bock and Hedeker (1987) in item-response theory. Other potential applications
include multivariate generalintions of probit analysis (see Ashford and Sow-
den. 1970 for the bivariate case), and random-effect probit models (Gibbons
and Bock. 1987), where the Clark approximation was used to estimate first-
order autocorrelation among the residual errors.

Another area of potential interest is in the approximation of multivariee
t probabilities. which can be considered as the joint distribution of n variates
t, = ;/s,(i = 1,2, .... n ) where the ; have a multivatiate normal distribution
with zero means and unknown variance o2. and known correlation ma:rix {pi)}.
while vs21(77 has a x2 distribution with v degrees of freedom and is independent
of the ;. Dunnett (1955) has evaluated this joint density for the case of
psj = p = ,5. by obtaining Fn(Z1. -n; {PO) and integrating out s. Use
of the Clark algorithm would provide a generalLation of their reihlt to the



case of general (AA, a natural application of which would be a generalization

of Dunnett's test to the case of unequal sam?le sizes among the k + 1 groups
(i.e., treatment groups and a singly. control).
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Table 1

Prcbability that n Standard Normal Random Variables with
Common Correlation p, are Simultaneously < h.

A. Comparison with MULNOR

n h p True'
MULNOR Clark

Prob Time2 Time3 Prob Time3
3 2.0 .9 .96170 .96170 .196 .060 .96185 .0008

4 2.0 .3 .92845 .92845 7.275 1.760 .93088 .0012

4 2.0 .8 .94759 .94758 13.735 2.913 .94819 .0012

4 2.0 9 .95708 .95707 18.557 3.855 .95730 .0012
1.0 .:3 52111 .3211:3 40.461 8.900 .51341 .0016

- 4 0.0 .9 .32967 .32965 NA 98040 .32921 .0026
-4 0.0 .2 ., .04043 .040:38 NA 7:3:3 .04122 .0026

Gupta (196:3)
Seconds on a DEC' 2060
Seconds on a COMPAQ 386-25. Weitek :3167. SVS FORTRAN
Accuracy set to 10-3 instead of 10-4 for MULNOR

B. Higher Dimensional Integrals

Clark
n h p True' Prob Time
10 0 .5 .09091 .08907 .0044
20 0 .5 .04762 .04657 .01:34

40 0 .5 .02439 .02:390 .0459
'Fn(0.0 ..... 0:1.51)= n+i

C. Tail Probabilities
n h p True' Clark
:3 -9.5 .5 .00017 .00021
:3 -9.5 .9 .002:30 .00231
.5 -9.5 .5 .00003 .00004
3 -9.5 .9 .00157 .00156
10 -2.5 .3 .00000 .00000
10 -2.5 .9 .00099 .00098

Gupta (196:3)
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